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Supervised machine learning

• Given samples 


• Want to learn  such that  for new 


•  is small.


• How? Find  minimizing training error: .


(x1, y1), …, (xn, yn) ∼ 𝒟 .

h : 𝒳 → 𝒴 h(x) ≈ y (x, y) ∼ 𝒟 .

R(h) = 𝔼[ℓ(h(x), y)]

h ∈ ℋ R̂(h) =
1
n

n

∑
i=1

ℓ(h(xi), yi)

R(h)
⏟

population error

= R̂(h)
⏟

training error

+ R(h) − R̂(h)

generalization error



Capacity-based narrative

• Capacity-based generalization bounds: VC-dimension, Rademacher, Fat-shattering dimension.


• e.g. VC-dimension: R(h) − R̂(h) ≤ Õ ( VC(ℋ)
n )

Unexpressive Model
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Capacity-based narrative

• Capacity-based generalization bounds: VC-dimension, Rademacher, Fat-shattering dimension.


• e.g. VC-dimension: R(h) − R̂(h) ≤ Õ ( VC(ℋ)
n )

Too Expressive Model



Classical ML theory vs deep learning practice

• Classical ML theory 

• Choose ML model to balance generalization-vs-
approximation tradeoff.


• Achieve small (but nonzero) training data with ERM.


• Regularization: sacrifice bias, improve variance


• Modern deep learning 

• Design a deep neural network architecture with more 
parameters than samples.


• Train to zero training error with SGD or Adam.


• Great generalization error!?
Use


attention



Benign overfitting and double-descent



How can we align theory with practice?

1. Empirical NN results

2. Boosting 4. SVMs

3. Linear regression

Theory of over-
parameterization in 

simple models

Understanding 
tension between 

modern DL vs theory.

Seeds for future 
theory for NN 
interpolation 

5. Theoretical limitations of 
capacity-based bounds

6. “Nice” NN  
theoretical properties
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“Rethinking generalization”
[ZBHRV17]

• Could capacity-based bounds describe NN 
generalization if NNs are biased in favor of “real 
world” data?


• No… NNs can fit random labels!


• Generalization still possible with corrupted labels.



Double-descent in NNs
[NKBYBS19, SGDSBW19, BHMM19]



Similar phenomena in other models
[BMM18]
• Kernel methods can have zero training error 

and small generalization error, like neural 
networks. 


• Laplacian kernels fit random labels.


• Generalization can still occur with corrupted 
labels


• Capacity-based generalization approaches 
also don’t explain generalization performance 
of kernel classifiers.
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AdaBoost
[FS97]

• Idea: aggregate weak 
learners together into strong 
learner.


• Guaranteed to fit training 
data with sufficiently many 
weak learners.


• ϵ ≤ 2T
T

∏
t=1

ϵt(1 − ϵt)



AdaBoost
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• Idea: aggregate weak 
learners together into strong 
learner.


• Guaranteed to fit training 
data with sufficiently many 
weak learners.


• ϵ ≤ 2T
T

∏
t=1

ϵt(1 − ϵt)



Boosting the Margin
[BFLS98]

• Margin bounds: generalization error is small when training data are decisively classified.


1. Voting classifiers that correctly classify training samples with large margin  have 
generalization bounds that do not depend on the number of constituent classifiers.


• Approximates voting classifier with a vote by a random sample of constituents.


• Decomposes test error with conditional probability and bounds each term with 
concentration bounds.


2. AdaBoost run for sufficiently many rounds  correctly classifies all training samples with 
margin .


• Proof similar to AdaBoost convergence result from FS97.

θ

T
θ
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Linear regression
• Sample . .


• Learn .


• Ordinary least-squares (OLS) (classical, ): 


•  minimizes , or .


• Minimum-norm interpolation (interpolation, ):


•  minimizes  such that , or .


• Ridge regression:


•  minimizes , or .

(x1, y1), …, (xn, yn) ∈ ℝd × ℝ (X, Y) ∈ ℝn×d × ℝn

x ↦ ̂θTx

n ≫ d

̂θ ∈ ℝd
n

∑
i=1

( ̂θTxi − yi)2 ̂θ = (XTX)−1XTY

d ≫ n
̂θ ∈ ℝd ∥ ̂θ∥ ̂θTxi = yi

̂θ = X(XXT)−1Y

̂θ ∈ ℝd
n

∑
i=1

( ̂θTxi − yi)2 + λ∥ ̂θ∥2 ̂θ = (XTX + λI)−1XTY



Classical generalization
[Zha05, CD07, AC10]

• OLS generalization bounds are roughly  (AC10).


• Can handle potentially infinite-dimensional kernel spaces with notion of effective dimension: 
  (Zha05, CD07).


•  as .


•  as .


•  in the worst case.


• Zha05 proves generalization bound on -regularized empirical risk-minimizing classifier. 
Excess error is approximately .

O(d/n)

Dλ = tr((𝔼[xxT] + λI)−1𝔼[xxT])

Dλ → rank(𝔼[xxT]) λ → 0

Dλ → 0 λ → ∞

Dλ = O( n)

λ
min
λ>0

λ + O(Dλ/n)



Benign overfitting in MNI
[BLLT19, BHX19, HMRT19, MVSS19, Mit19, MN19, MM19]

• Double-descent in misspecified model 
where over-parameterized setting has more 
information [BHX19, HMRT19, Mit19].


• Similar phenomenon for random features 
model [MM19].


• Benign overfitting in full information model 
when signal concentrated in a small 
number of important features, surrounded 
by many unimportant features [BLLT19, 
HMRT19, MVSS19, MN19].


• Similar results for ridge regression [DW15, 
TB20].



Benign overfitting: feature importance
[BLLT19]

• MNI for subgaussian inputs with covariance  (with eigenvalues ), optimal 
weights , and subgaussian noise .


• Depends on effective ranks of :  and .


• Theorem: With probability 0.99 for , the excess risk is at most:


  


• Bound by bias-variance decomposition, concentration bounds based on spectrum, analysis of 
projection operator onto row space of .

Σ λ1 > λ2 > …
θ* σ

Σ rk(Σ) = ∑
i>k

λi/λk+1 Rk(Σ) = (∑
i>k

λi)2/∑
i>k

λ2
i

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
X



Benign overfitting: feature importance
[BLLT19]
• Theorem: With probability 0.99 for , the excess risk is at most:


  .

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
• Setting A: Isotropic features 

• .


• .


• , .


•  

Σ = Id

r0(Σ) = d

k* = 0 Rk*(Σ) = d

O (∥θ*∥2 d
n

+
σ2n
d )



Benign overfitting: feature importance
[BLLT19]
• Theorem: With probability 0.99 for , the excess risk is at most:


  .

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
• Setting B: Exponential decay 

• .


• .


•   unbounded risk


λi = 2−i

r0(Σ) = 2

k* = ∞ ⟹



Benign overfitting: feature importance
[BLLT19]
• Theorem: With probability 0.99 for , the excess risk is at most:


  .

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
• Setting C: Quadratic decay 

• .


• .


• , .


• .


λi = 1/i2

r0(Σ) = Θ(1)

k* = Θ(n) Rk*(Σ) = Θ(n)

O(∥θ*∥2 + σ2)



Benign overfitting: feature importance
[BLLT19]
• Theorem: With probability 0.99 for , the excess risk is at most:


  .

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
• Setting D: Slow decay 

• .


• .


• , .


•   as .

λi = 1/(i log2(i + 1))

r0(Σ) = Θ(1)

k* = Θ(n/log n) Rk*(Σ) = Θ(n log n)

O ( ∥θ*∥2

n
+

σ2

log n ) → 0 n → ∞



Benign overfitting: feature importance
[BLLT19]
• Theorem: With probability 0.99 for , the excess risk is at most:


  .

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O(∥θ*∥2λ1( r0(Σ)
n

+
r0(Σ)

n ) + σ2( k*
n

+
n

Rk*(Σ) ))
• Setting E: Bi-level 

•  


•  for ,  otherwise


• .


• , .


•   as .

d = n log n

λi = 1 i ≤ n/log n λi = 1/log2 n

r0(Σ) = Θ(n/log n)

k* = n/log n Rk*(Σ) = Θ(n log n)

O ( ∥θ*∥2

log n
+

σ2

log n ) → 0 n → ∞



Benign overfitting: signal bleed and contamination
[MVSS19]

• Interpolation involves choosing among 
many aliases, or different solutions 
with zero training error.


• Signal bleed: true signal dissipates 
into different aliases and chosen alias 
has little signal.


• Avoided with small number of high-
importance features.


• Signal contamination: chosen alias 
incorporates too much noise and info 
from irrelevant features.


• Avoided with sufficiently slow 
decay of feature importance.
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Hard SVM or maximum-margin classification

• Linearly separable 
.


• Learn .


•  minimizes  such that 
.


•  is a support vector if .


• Classical generalization bounds rely on 
bounding number of support vectors.

(x1, y1), …, (xn, yn) ∈ ℝd × {−1,1}

x ↦ sign( ̂θTx)
̂θ ∈ ℝd ∥ ̂θ∥
̂θTxi ≥ yi

xi
̂θTxi = yi



SVM benign overfitting by connection to OLS
[MNSBHS20]

• When , support vector 
proliferation occurs. (Every sample is a support 
vector and MNI = SVM).


• By HMX21 and ASH21, SVP threshold at 
.


• Relates binary- and real-valued OLS generalization 
via survival and contamination analysis (like MVSS19).


• Benign overfitting is "easier" in classification than 
regression.


• Like BLLT19, benign overfitting occurs when bi-level 
model does not have too slow a drop-off between 
high-importance and low-importance features.

d = Ω(n3/2 log n)

Θ(n log n)



SVM benign overfitting by gradient descent
[CL20]

• By Soudry, et. al. (2018), gradient descent on separable data with logistic 
loss converges to hard-margin SVM.


• Benign overfitting for over-parameterized  data drawn from two 
clusters.


• Direct proof by showing that angle between true separator and learned 
separator is small. 


• Need to show that noisy samples do not have outsize influence on 
optimization process.

d = ω(n2)
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When capacity-based bounds fail
[BL20]

• Considers all valid model-
dependent generalization bounds 

 that bound the excess risk 
with probability 0.9 for all data 
distributions .


• For any bound  and , exists a 
distribution  over high-
dimensional features where the 
least-norm interpolant  has 
excess error , but 

.

ϵ(h, n)

P

ϵ n
Pn

h
O(1/ n)

ϵ(h, n) ≥ 1/2
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Smoothness and robustness in interpolating NNs
[BLN20, BS21]

• Conjecture: WHP over sample, (1) exists 2-
layer NN of width  interpolating  samples of 
Lipschitz constant , and (2) all 
interpolating NNs are -Lipschitz.


• Weaker version of (1) from BLN20.


• Proof of (2) from BS21.

k n
O( n/k)

Ω( n/k)



Conditioning from many random layers
[AAK20]

• Random layers orthogonalize inputs


• Implications for SQ learning, optimization.


• Benign overfitting in narrow case for deep 
features, but too coarse bias bound.


• Idea: Maybe intermediate features have 
small effective dimensional and favorable 
conditions for benign overfitting?



Last Thoughts

• Narrative 1: benign overfitting “decisive voting,” aggregation of many low-
importance signals (boosting, linear regression variances, SVM features)


• Narrative 2: double-descent by ill-conditioning and easy approximation/
model simplicity (misspecified model, regularization)


• Future work: connections to NN robustness, explorations of connections 
between algorithms, more formulations of “simplicity.”


Thank you.
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Appendix
Paper Recaps
1.Empirical Results for Neural Nets: ZBHRV17, BMM18, BHMM19, NKBYBS19, SGDSBW19.


2.Boosting: FS97, BFLS98.


3.Linear Regression:


A.Minimum-norm Least-squares Regression: BHX19, BLLT19, HMRT19, Mit19, MVSS19.


B.Spike Covariance and PCA: WF17, MN19, XH19, HHV20.


C.Ridge Regression: Zha05, CD07, DW15, TB20.


D.PAC-Bayesian Linear Regression: AC10.


E.Random Feature Regression: MM19.


F.Kernel Regression: RZ19, LRZ19.


4.Support Vector Machines: MBSBHS20, CL20.


5.Limitations of Capacity-Based Bounds: BL20.


6.Properties of Over-parameterized Neural Networks: AAK20, BLN20, BS21.



Appendix 1: Empirical Results for 
Neural Nets



Understanding deep learning requires rethinking generalization. 
Zhang, Bengio, Hardt, Recht, and Vinyals (2017). 

• Results 

• Empirically, NNs trained on random labels can still reach zero training error with 
more training steps. (a)


• NNs trained with some fraction of corrupted labels still generalize to new data. (c) 


• Implications 

• NNs have very high “effective capacity” for fitting arbitrary image datasets, and 
optimization algorithms continue to work.


• A working theory of NN generalization will not rely purely on model capacity and 
explicit regularization.


• Not all models that fit training data in over-parameterized NNs generalize well; 
implicit regularization of learning algorithms is key in choosing the right 
interpolation!



To Understand Deep Learning We Need to Understand Kernel 
Learning. Belkin, Ma, Mandal (2018). 

• Results 

• Kernel methods can have zero training error and small generalization error, like 
neural networks. Empirical observation that Laplacian kernels can also easily fit 
random labels.


• Theorem 1: Any kernel method overfitting data from some distribution must have a 
high function norm and hence not be “simple” as required for fat-shattering 
generalization bounds.


• Generalization decays gradually as label noise increases.


• Implications 

• Many of the issues described by ZBHRV17 for generalization in NNs apply to kernel 
classifiers too.


• Capacity-based generalization approaches (e.g. VC-dimension, Rademacher 
complexity) also don’t explain generalization performance of kernel classifiers.


• No known generalization bounds can explain noisy generalization, since it would 
need to be between positive Bayes error and 1 to not be vacuous.



Reconciling modern machine-learning practice and the classical 
bias–variance trade-off. Belkin, Hsu, Ma, Mandal (2019). 

• Results 

• Double-descent 
empirically occurs for 
random Fourier features, 
two-layer ReLU 
networks, and random 
forests.


• Implications 

• Inductive biases of small 
norms and optimization 
algorithms encourages 
good generalization in 
interpolation regime.



Deep double descent: Where bigger models and more data hurt. 
Nakkiran, Kaplun, Bansal, Yang, Barak, and Sutskever (2019). 

• Results 

• Observed double-descent phenomenon for deep neural networks with respect to changes in sample size, 
model size, and number of epochs.


• Early stopping can mitigate double-descent in NNs.


• Double descent curve holds up even in presence of (small amount of) label noise.



A jamming transition from under- to over-parametrization affects generalization 
in deep learning. Spigler, Geiger, d’Ascoli, Sagun, Biroli, and Wyart (2019). 

• Results 

• There exists a “jamming transition” in neural networks that causes the generalization error to spike when the number of 
parameters is approximately the number of samples; similar shape to double-descent.


• In over-parametrized regime, unlikely to have any bad local minima because constraints make these stable minima unlikely.


• Early stopping can mitigate the spike of the jamming transition.


• Techniques 

• Statistical physics methods, based on the analysis of the dimensionality of manifolds. 


• Analogy between NN and glasses, physical systems with exponentially many local minima.



Appendix 2: Boosting



A decision-theoretic generalization of online learning and an 
application to boosting. Freund and Schapire (1997). 

• Results 

• Introduces AdaBoost algorithm, which combines weak learners 
of various effectiveness from reweighed data distributions into 
a single voting-based classifier.


• Theorem 6: Bound on training error of AdaBoost with  weak 
learners.


• Theorems 7 + 8: VC generalization bounds suggest classical 
capacity and overfitting tradeoffs as  increases.


• Empirically, however, generalization of AdaBoost improves 
monotonically with , even after training error approaches zero.


• Implications 

• Poses question about limitations of capacity-based 
generalization for analyzing some interpolating classifiers.

T

T

T



Boosting the margin: a new explanation for the effectiveness of 
voting methods. Bartlett, Freund, Lee, Schapire (1998). 

• Results 

• Theorem 2: Voting classifiers that correctly classify training samples with large margin  
have generalization bounds that do not depend on the number of constituent classifiers.


• Approximates voting classifier with a vote by a random sample of constituents.


• Decomposes test error with conditional probability and bounds each term with 
concentration bounds.


• Theorem 4: AdaBoost run for sufficiently many rounds  correctly classifies all training 
samples with margin .


• Proof similar to AdaBoost convergence result from FS97 by bounding 


• Implications 

• Explains gap between empirical generalization performance and VC generalization 
bounds for AdaBoost (FS97).


• Margin  continues to grow with , even as training error equals zeros; hence, continued 
generalization improvements are explained.

θ

T
θ

θ T



Appendix 3: Linear Regression



Appendix 3A: Minimum-norm 
Least-squares Regression



Two models of double descent for weak features. Belkin, Hsu, Xu 
(2019). 

• Results 

• Considers the misspecified model for minimum-norm interpolation (and 
least-squares regression) Gaussian and Fourier features where there are 

 total features, of which the  most significant features are provided to 
the learner.


• Generalization bounds depend on bias-variance decomposition.


• Bias increases with , but is bounded because true weights  
remain close to row space of samples .


• Variance decreases with  beyond over-parameterization, . 


• Implications 

• Double descent can occur as the number of features  grows when 
each new improves the model's abilities to approximate the true 
function.


• Does not rely on bounds on effective dimension of feature distribution.


• In the “prescient feature model” where  features have highest variance, 
optimal behavior occurs in classical regime, despite second descent.

N d

d β
X

d d > n

d

d



Benign overfitting in linear regression. Bartlett, Long, Lugosi, 
Tsigler (2019). 

• Results 

• Minimum-norm interpolation for subgaussian inputs with covariance  (with eigenvalues ), optimal weights , and subgaussian noise .


• Depends on effective ranks of :  and 


• With probability 0.99 for , the excess risk is at most:





• If ’s decay rapidly, then effective rank is small and   vacuous bound.


• If ’s decay slowly, then effective rank is large and   vacuous bound.


• Risk approaches 0 with increased  when there are  “high-importance" features with large eigenvalues (which  depnds on) and  “lower-importance" 
features. (Bias in favor of predictions that pay attention to high-importance features.)


• Bound by bias-variance decomposition and concentration bounds based on spectrum and analysis of projection operator onto row space of training data.


• Includes a matching lower bounds with the RHS term.


• Implications 

• “Goldilocks” phenomenon for properly specified over-parameterized models; spectrum of features must decay neither too rapidly nor too gradually.


• Over-parameterization is essential for benign overfitting; cannot occur if number of significant directions isn't much larger than number training samples.

Σ λ1 > λ2 > … θ* σ

Σ rk(Σ) = ∑
i>k

λi /λk+1 Rk(Σ) = (∑
i>k

λi)2/∑
i>k

λ2
i

k* = min{k ≥ 0 : rk(Σ) ≥ bn}

O (∥θ*∥2λ1 ( r0(Σ)
n

+
r0(Σ)

n ) + σ2 ( k*
n

+
n

Rk*(Σ) ))
λi n ≫ Rk*(Σ) ⟹

λi r0(Σ) ≫ n ⟹

n o(n) θ* ω(n)



Surprises in high-dimensional ridgeless least squares 
interpolation. Hastie, Montanari, Rosset, Tibshirani (2019). 

• Results 

• Considers infinite limit setting for number of samples  and features ; 
 and , where  quantifies degree of over-parameterization. 

Instead of analyzing fixed eigenvalues, examines limiting distribution of 
eigenvalues.


• Provides very general version of BLLT19 generalization bounds by showing 
convergence of bias and variance to fixed quantities that depend on 
Marchenko-Pastur distribution of eigenvalues.


• Results rely on showing similarity to limiting ridge regression for small 
regularization parameter .


• Implications 

• Similar to BLLT19: need to have many unimportant low-variance features for 
benign overfitting to occur.


• Similar to HMX19 for misspecified model double descent with isotropic 
features.


• Properly-tuned ridge regression dominates over-parameterized minimum-
norm regression.

n d
n → ∞ d = γn γ

λ



Understanding overfitting peaks in generalization error: Analytical 
risk curves for  and  penalized interpolation. Mitra (2019). ℓ2 ℓ1

• Results 

• Considers misspecified model of HMX19 and HMRT19 for both ridge ( -penalized) 
and lasso ( -penalized) regression in the asymptotic regime where number of 
samples , available features , and total features  go to infinity proportional to one 
another. Parameter vectors are randomly drawn and sparse.


• Obtain analytical expression for generalization under simple data model with 
Gaussian features.


• Increasing regularization  eliminates the overfitting peak (and double-descent) in 
both settings.


• There is a large interval beyond the interpolation threshold where -penalized 
regression generalizes and  does not.


• Implications 

• Reinforces notion that  inductive biases reward sparsity, which helps in this case 
with sparse weights.

ℓ2
ℓ1

n d N

λ

ℓ1
ℓ2

ℓ1



Harmless interpolation of noisy data in regression. Muthukumar, 
Vodrahalli, Subramanian, Sahai (2019). 

• Results 

• Theorem 1: Like lower bound in BLLT, shows that benign overfitting can only occur when a model is 
sufficiently over-parameterized by lower-bounding the generalization abilities of interpolating solutions as 
roughly .  


• Frames benign overfitting in terms of signal processing and characterizes failure modes.


• Interpolation involves choosing among many aliases, solutions with zero training error that are only 
distinguished by inductive bias of algorithm (here, minimum norm).


• If just barely over-parameterized, exist few interpolating aliases; unlikely they'll be any good.


• Signal Bleed: True signal dissipates into orthogonal aliases… no alias will preserve enough signal! 
Occurs when insufficient bias for important features. (Need small number of high-importance features 
from BLLT)


• Signal Contamination: Too much noise is incorporated into the chosen alias. Can prevent by dissipating 
noise, which is ensured by having eigenvalues not decrease too rapidly. 


• Implications 

• Connects double-descent to signal processing and proposes a relatively simple framework for why 
interpolation succeeds only sometimes.

Ω(n/d)



Appendix 3B: Spike Covariance 
and PCA



Asymptotics of empirical eigenstructure for high dimensional 
spiked covariance. Wang and Fan (2017). 

• Results 

• Introduces the spiked covariance model, whose covariance matrix  has a constant 
number of large (and decaying) eigenvalues and all other eigenvalues are much smaller.


• Demonstrates that empirical estimates  have biased predictions of largest 
eigenvalues and eigenvectors and gives a new algorithm to counter this bias and 
provide better estimates.


• Implications 

• Sets the stage for MN19 work on benign overfitting in the spiked covariance model.


• Influences XH19 and HHV20 by suggesting the limitations of PCA when covariance 
spectrum has a sharp drop-off.

Σ

Σ̂



Risk of least-squares minimum-norm estimator under the spike 
covariance model. Mahdaviyeh and Naulet (2019). 

• Results 

• Considers over-parameterized regime for infinite limit of  and  with spike covariance, where 
constant number of features have increasing eigenvalues and others are smaller. Eigenvalues do 
not necessarily decay to zero.


• BLLT19 bounds hold in this setting, but provide tighter analysis of bias due to known properties 
of spike covariance matrix from past work. Leverages separation between eigenvalues to obtain 
much tighter bounds by separating the eigenspaces of each high-importance feature direction.


• Bounds hold if first eigenvalue is large enough and . Asymptotic bounds require only 
bounds on moments, not necessarily 


• Implications 

• Demonstrates clear family of covariances with much clearer benign overfitting behavior than 
BLLT19.

n d

d ≫ n



On the number of variables to use in principal component 
regression. Xu and Hsu (2019). 

• Results 

• Exhibits double-descent for Principal Component Regression, where PCA is used to reduce the dimensionality of 
the inputs and minimum-norm OLS is applied to the low-dimensional inputs. Uses atypical version of PCA where 
access to covariance matrix  is assumed without needing to approximate it. 


• Proofs rely on similar decomposition to HMX19, but with incorporation of distribution over spectrum as 
parameters go to infinity.


• Assumes Gaussian features with strictly decreasing eigenvalues of , noiseless labels, and randomly chosen 
weights. Number of total features , PCA’d features , and samples  approach infinity at fixed ratios. 


• In noisy setting, generalization in interpolation regime can only outperform classical regime if eigenvalues decay 
sufficiently slowly.


• Implications 

• Extends double-descent to a different model of linear regression.


• Informs design choices on how to choose  for PCR.

Σ

Σ
N d n

d



Dimensionality reduction, regularization, and generalization in 
overparameterized regressions. Huang, Hogg, Villar (2020). 

• Results 

• Somewhat counter to XH19, presents bounds that PCA-OLS (or PCR) has no interpolation peaks 
when PCA is performed on the empirical covariance estimate , rather than the true covariance . 
Follows because variance can be upper-bounded by a monotonic quantity.


• Empirical PCA avoids peaking by preventing the condition number of  from becoming large at 
the interpolation threshold .


• Implications 

• PCA is presented as a way to avoid double-descent and have no spike at the interpolation threshold.


• Peaking in misspecified model of BHX19 is caused by large expected condition number of , and 
regularization can prevent the peak by reducing the condition number.


• Regularization can be conceived of more broadly than just norm constraints in objective function.

Σ̂ Σ

XTX
n ≈ p
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Appendix 3C: Ridge Regression



Learning bounds for kernel regression using effective data 
dimensionality. Zhang (2005). 

• Results 

• Introduces effective dimension quantity  for (possibly infinite-dimensional) features  and regularization 
parameter .


•  as .


•  as .


•  in the worst case.


• Proves generalization bound on -regularized empirical risk-minimizing classifier. Excess error is approximately .


• Implications 

• The fact that some kernel methods map to an infinite-dimensional vector space and generalize does not mean that they conquer the curse 
of dimensionality; rather, they have a small effective dimension.


• Sometimes, benign overfitting can be explained by the data being intrinsically low-dimensional.


• Unlike future benign-overfitting bounds, generalization error bound applies to all classifiers in some convex space with bounded norm.


• Kernel classifiers can be simplified computationally by only studying the directions of the largest eigenvalues.

Dλ = tr((𝔼[ψ ψT] + λI)−1𝔼[ψ ψT]) ψ
λ

Dλ → rank(𝔼[ψ ψT]) λ → 0

Dλ → 0 λ → ∞

Dλ = O( n)

λ min
λ>0

O(λ + Dλ/n)



Optimal rates for the regularized least-squares algorithm. 
Caponnetto and De Vito (2007). 

• Results 

• For ridge regression with expected squared loss and 
regularization parameterized by  and bounded feature 
distributions with subgaussian noise, near-matching upper and 
lower bounds on population error.


• Bounds identify an optimal setting for  as a function of number 
of training samples  and hold in the limit where .


• Uses same formulation of effective dimension as Zha05 in proof 
of bounds; higher effective dimension  slower rate of 
convergence with .


• Implications 

• Illustration of strong bounds for minimum-norm regression in the 
classical regime.


• Limiting behavior of  and fixed (effective) dimension excludes 
benign overfitting bounds and rather demonstrates optimal 
behavior in classical regime.

λ

λ
n n → ∞

⟹
n

n



High-dimensional asymptotics of prediction: ridge regression and 
classification. Dobriban and Wagner (2015). 

• Results 

• Asymptotic ridge regression results for  and  approaching infinity at a fixed 
rate  for features from distribution with bounded moments.


• Relies on limiting distribution of eigenvalues as summarized by the Stieltjes 
transform, which captures a notion of effective dimension. Provides the 
optimal regularization parameter  based on the degree of over-
parameterization and the signal-to-noise ratio.


• Implications 

• Similar types of results as HMRT19, but with a simpler covariance structure 
and without considering minimum-norm interpolation with .


•  increases as  increases, which means it says little about over-
parameterized minimum-norm interpolation, since the functions are distinctly 
different.

n d
γ ∈ (0,∞)

λ*

λ → 0

λ* γ



Benign overfitting in ridge regression. Tsigler and Bartlett (2020). 

• Results 

• Similar story as BLLT19, except considers ridge regression rather than minimum-norm 
interpolation.


• Very similar bounds, except that effective ranks include the regularization term  in the 
numerator:  and .


• Increasing  improves the variance bound and worsens the bias bound of BLLT19.


• Implications 

• Very mild regularization  can mitigate the problems minimum-norm interpolation faces when 
features decay too rapidly


• Generalization of BLLT19 bounds.

λ
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λi)/λk+1 Rk(Σ) = (λ + ∑
i>k

λi)2/∑
i>k

λ2
i

λ

λ



Appendix 3D: PAC-Bayesian 
Linear Regression



Linear regression through PAC-Bayesian truncation. Audibert and 
Catoni (2010). 

• Results 

• Surveys generalization bounds for least-squares linear regression in classical regime of roughly  
excess error. All fall short in various ways:  terms in numerator, strong assumptions about tail 
behavior of features/noise, dependence on condition number of random matrix that is not know a priori, 
boundedness of true function.


• Introduces a PAC-Bayes algorithm that obtains a superior risk bound to any of the least-squares 
regression bounds without requiring sharp tails and well-conditioned inputs and with no log factor.


• Algorithm updates a distribution over solutions by choosing solutions with higher probability if they 
have smaller training error and sampling from distribution. 


• Exponentially-weighted distribution introduces exponential tails for proof, even if they are not assumed 
to exist.


• Implications 

• Demonstrates comprehensiveness of bounds of least-squares regression in classical setting.

O(d/n)
log n



Appendix 3E: Random Feature 
Regression



The generalization error of random features regression: Precise 
asymptotics and double descent curve. Mei and Montanari (2019). 

• Results 

• Considers linear combinations of  random features  for random -dimensional . 
Asymptotic regime where  at fixed ratios. Learn top-level coefficients with ridge 
regression with parameter . Random features and samples are drawn uniformly from a sphere 
and true function is typically linear.


• Theoretical results show convergence to fixed “true” bias and variance terms  and  that 
are absurdly complex; similar in flavor to HMRT19 results. Some takeaways:


• For small , peaking still occurs when . Optimal choices of  for each  ratio 
mitigates double-descent and makes error monotonically decrease.


• For fixed , optimal generalization occurs in over-parameterized regime .


• Methods draw from random matrix theory and “log-determinants.”


• Implications 

• Double-descent occurs in a model that is more similar to neural networks without requiring 
funny data distributions.

N σ(⟨x, w⟩) d w
n, N, d → ∞
λ

ℬ 𝒱

λ n = N λ N/n
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Appendix 3F: Kernel Regression



Consistency of Interpolation with Laplace Kernels is a High-
Dimensional Phenomenon. Rakhlin and Zhai (2019). 

• Results 

• Laplacian kernel interpolation with fixed kernel radius has constant lower bound on error in low dimensions.


• If kernel radius is large, then there are balls around each sample where the classifier has roughly the same output and is 
hence influenced by the noise of the sample. In low-dimensions, these balls have non-negligible size. 


• If kernel radius is small, then interpolating solution will have much smaller than norm than true solution and cannot be a 
good approximation.


• Implications 

• Some interpolation methods cannot work without high-dimensions, regardless of number of samples.



On the multiple descent of minimum-norm interpolants and 
restricted lower isometry of kernels. Liang, Rakhlin, Zhai (2019). 

• Results 

• Gives upper bounds that suggest multiple-descent can 
occur in the under-parameterized regime. Remains to show 
a matching lower bound to show it must occur.


• Each multiple descent depends on a term that roughly 
captures BLLT19 variance.


• To have a peak at , the kernel functions must 
have a non-zero coefficient . When , the 
degree-  approximation of the kernel matrix may be ill-
conditioned, causing a peak.


• Implications 

• Multiple descent can occur in kernel regression when kernel 
is the right degree polynomial.

d = n1/ι

αι d = n1/ι
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Appendix 4: Support Vector 
Machines



Classification vs regression in overparameterized regimes: Does the loss 
function matter? Muthukumar, Narang, Subramanian, Belkin, Hsu, Sahai (2020). 

• Results 

• Proves that support vector proliferation (or OLS=SVM) occurs for very high-
dimensional SVMs.


• Relates binary- and real-valued OLS benign overfitting by considering simple 
bi-level model with 1-sparse signal and no noise via survival and contamination 
analysis (like MVSS19).


• Like BLLT19, benign overfitting occurs when bi-level model does not have 
too slow a drop-off between high-importance and low-importance features.


• Classification generalization requires low contamination; regression 
requires low contamination and high survival.


• Implications 

• Benign overfitting can happen for SVMs where every sample is a support 
vector by transferring results from minimum-norm interpolation.


• Benign overfitting is "easier" in classification than regression.


• SVM generalization bounds can be proved outside of the “classical” setting 
where only a few training samples can be support vectors.



Finite-sample analysis of interpolating linear classifiers in the 
overparameterized regime. Chatterji, Long (2020). 

• Results 

• By Soudry, et. al. (2018), gradient descent on separable data with logistic loss converges to maximum-
margin classifier (or hard-margin SVM).


• For over-parameterized  data  drawn from two clusters with noisy labels, benign overfitting 
for classification occurs.


• Direct proof by showing that angle between true separator and learned separator is small. Follows 
from convergence of weights of gradient descent on logistic loss and fact that noisy samples are 
shown to not have out-size influence on optimization process.


• One instance is the Boolean noisy rare-weak model, where small fraction of features weakly indicate 
the cluster and all others give no information.


• Implications 

• SVM benign overfitting can occur in high-dimensional case in more general setting than MNSBHS20 
and with a different proof technique.

d = ω(n2)



Appendix 5: Limitations of 
Capacity-Based Bounds



Failures of model-dependent generalization bounds for least-
norm interpolation. Bartlett and Long (2020). 

• Results 

• Considers all valid model-dependent generalization bounds , which depend only on the hypothesis 
and the number of training samples that bound the excess risk with probability 0.9 for all data distributions 

.


• For any bound  and sample size , shows that there exists a probability distribution  over high-
dimensional features where the least-norm interpolant  has excess error , but .


• Proof relies on supplying two similar distributions, one where minimum-norm interpolation does very well 
and one where it does poorly. The two are constructed so that MNI returns the same hypothesis in each. 
Thus, the generalization bound must be very loose on the “good" distribution.


• Implications 

• The success of least-norm interpolation can only be predicted given knowledge of the data distribution; 
seeing the solution and the sample size alone are insufficient to distinguish it from poor solutions. 
Establishes limitations of generalization approaches based on model capacity and smoothness of solutions.

ϵ(h, n)

P

ϵ n Pn
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Appendix 6: Properties of Over-
parameterized Neural Networks



A deep conditioning treatment of neural networks. Agarwal, 
Awasthi, Kale (2020). 

• Results 

• Passing arbitrary inputs with bounded inner products through many randomly-initialized layers 
produces features that are nearly orthogonal.


• Suggests bounds on fast training and hardness results for SQ learning.


• Applies BLLT19 results to second-last layer to give generalization bounds on treating last layer of 
weights as minimum-norm interpolation.


• However, bounds are vacuous for most settings because impossible to make many assumptions 
on data distribution of last layer; some distributions with large BLLT19 bias bounds may be large 
because over-parameterized models with too slow decay can produce orthogonal features.


• Implications 

• Conceivable that depth of neural networks influences high-depth features to be drawn from 
distribution with favorable conditions for benign overfitting. Possible area of future research? 



A law of robustness for two-layer neural networks. Bubeck, Li, 
Nagaraj (2020). 

• Results 

• Conjectures that a 2-layer neural nets of width  and Lipschitz constant  can 
perfectly fit  training samples, and that all interpolating NNs have Lipschitz constant 

.


• Proves several weaker statements:


• If ,  neurons can fit the data with Lipschitz constant .


• If , there exists an -Lipschitz network fitting the data.


• Can fit with -Lipschitz network.


• For very small dimensions, near fit, and polynomial activation, can fit with 
-Lipschitz by tensor interpolation argument.


• Implications 

• If true, would suggest favorable robustness and (possibly) generalization properties of 
very over-parameterized neural networks.


• Would also suggest that robustness is only possible if a neural network is over-
parameterized.

k O( n/k)
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A universal law of robustness via isoperimetry. Bubeck and Sellke 
(2021). 

• Results 

• Proves a stronger version of the negative part of the BLN20 conjecture: with high probability over 
data, all neural networks approximately interpolating  samples with width  and constant depth 
and bounded weights have a Lipschitz constant of .


• Proof follows by isoperimetry argument.


• A fixed -Lipschitz function will not fit  random samples with high probability.


• For small , an -net argument can show that no -Lipschitz function can fit  random 
samples WHP.


• Implications 

• Neural networks can only be robust (i.e. have a small Lipschitz constant) if they are highly over-
parameterized.
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